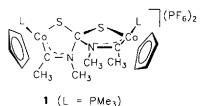
Mono- and Bicyclic Organometallic Ring Systems with Exocyclic C=C and C=S Bonds[☆]

Helmut Werner*a, Liu Xiaolana, Karl Petersb, and Hans Georg von Schneringb

Institut für Anorganische Chemie der Universität Würzburg^a Am Hubland, D-97074 Würzburg, Germany

Max-Plank-Institut für Festkörperforschung^b, Heisenbergstraße 1, D-70506 Stuttgart, Germany


Received March 6, 1997

Keywords: Cobalt / Cyclopentadienyl complexes / Heterocycles / Electrophilic addition / Insertion reaction

The cobaltaheterocycles $[C_5H_5Co\{\kappa^2(C,S)-C(=CH_2)-N(R)C(=S)S](PMe_2Ph)]$ (5–7), which contain both an exocyclic C=C and C=S bond, were prepared from the iminoacylcobalt compounds $[C_5H_5Co\{C(CH_3)=NCH_3\}(PMe_2-Ph)]I$ (2–4) on treatment with either $CS_2/NaOCH_3$ or $K[S_2CNMe_2]$, respectively. While protonation of 5 (R = CH₃) and 7 (R = CH₂Ph) with HBF₄ occurs at the exocyclic C=CH₂ bond to give cations containing a $CoC(CH_3)N(R)C(=S)S$ ring, the methylation of 5 and 7 with $[OMe_3]BF_4$ takes place at the exocyclic C=S bond and generates five-membered hetero-

cycles with an SCH₃ substituent. The reaction of **5–7** with S_8 leads to the elimination of the phosphane ligand and affords the bicyclic dithiolenecobalt complexes **14–16** in moderate to good yields. On treatment of **5–7** with $C_2(CO_2R')_2$ (R' = Me, Et), an insertion of the alkyne into the C=CH₂ bond occurs and five-membered ring systems **19–22** with an unsaturated exocyclic = $C(CO_2R')-C(CO_2R')=CH_2$ group are formed. As in the case of **5** and **7**, protonation and methylation reactions of **19** also take place at different sites leading to cations with either a delocalized CoCN or NCS unit.

In continuation of our work on d⁸ halfsandwich-type complexes, which behave as Lewis bases^[1], we have recently shown that isocyanidocobalt(I) as well as iminoacylcobalt-(III) compounds on treatment with C-X double- or triplebond systems readily undergo [2 + 2] and [3 + 2] cycloaddition reactions to give four- or five-membered cobaltaheterocycles^[2]. By usig [C₅H₅Co{C(CH₃)=NCH₃}(PMe₃)]I as the starting material and CS₂ as the substrate, in the presence of a PF₆ salt instead of a mononuclear cobalt complex the binuclear spirocyclic compound 1 is formed^[3].

When we extended these studies to analogous iminoacyl-cobalt derivatives with phosphane ligands other than PMe₃, we found that the cationic species $[C_5H_5Co-\{C(CH_3)=NCH_3\}(PMe_2Ph)]^+$ reacts with CS_2 in the presence of NaOCH₃ to yield a neutral mononuclear product with a CoCNCS five-membered ring^[4]. The remarkable reactivity of this compound towards S_8 prompted us to further develop the chemistry of sulfur-containing cobaltaheterocycles and to investigate in particular their behavior towards electrophilic substrates.

In this paper we describe a new route to metal-containing ring systems with both exocyclic C=CH₂ and C=S bonds, the conversion of these species to bicyclic dithiolenecobalt

complexes, and the formal insertion of activated alkynes into the C=CH₂ bond. We furthermore illustrate that protonation and methylation reactions of both the initially formed heterocycles and the insertion products occur at different sites of the molecules, probably due to the hardness and softness of the reacting centres.

Results and Discussion

Preparation and Electrophilic Addition Reactions of the CoCNCS Heterocycles

We have already reported that the heterocyclic complex 5 is formed from 2 after stepwise reactions with CS₂ and Na-OCH₃ in dichloromethane^[4]. The iminoacylcobalt(III) compounds 3 and 4 behave similarly (see Scheme 1) and upon treatment with CS₂ and NaOCH₃ give the uncharged metallaheterocycles 6 and 7 in ca. 60% yield. An alternative route to 5–7 consists of the reaction of the starting materials 2–4 with the dithiocarbamate K[S₂CNMe₂] in CH₂Cl₂ at room temp. which, after chromatographic workup and recrystallization from CH₂Cl₂/ether, affords the target complexes in excellent yield.

The IR- and NMR-spectroscopic data of 6 and 7 are quite similar to those of compound 5, the molecular structure of which has been determined by X-ray crystallography^[4]. Characteristic features of the ¹H-NMR spectra of 6 and 7 (in CDCl₃) are the two resonances for the chemically different protons of the exocyclic =CH₂ group, which – due to P-H and H-H coupling – appear as doublets of doublets, and also the two signals for the CH₃ protons of the phosphane ligand, diagnostic for the chirality of the

molecules. The 13 C-NMR spectrum of 7 (in CDCl₃) displays a singlet at $\delta = 210.3$ for the C=S and a broadened doublet at $\delta = 157.5$ for the C=CH₂ carbon atoms, the broadening being due to the quadrupole moment of cobalt.

Scheme 1. $L = PMe_2Ph$

3, 6

C₆H₅

4,7 | CH₂Ph

The protonation reactions of **5** and **7** with HBF₄ in CH_2Cl_2 /ether lead to the formation of cationic cobaltaheterocycles, in which the metal-bonded carbon atom carries instead of a methylene a CH_3 group. The BF₄ salts **8** and **9** (Scheme 2), that have been isolated as red microcrystalline solids, are practically air-stable and soluble in polar solvents such as CH_2Cl_2 , $CHCl_3$ or nitromethane. The ¹H-NMR spectra of **8** and **9** display instead of two signals for the $=CH_2$ protons (as observed for the precursor compounds **5** and **7**) a doublet at $\delta = 3.41$ (**8**) or 3.40 (**9**) with the relative intensity of 3H for the CCH_3 group. The ¹³C-NMR spectrum of **9** exhibits resonances at $\delta = 157.0$ for the CCH_3 and at $\delta = 9.7$ for the CCH_3 carbon atoms, which supports the structural proposal.

Scheme 2. $L = PMe_2Ph$

In contrast to HBF₄, Meerwein's reagent [OMe₃]BF₄ does not attack the C=CH₂ but the C=S bond leading to a five-membered ring with an exocyclic SCH₃ unit. The cationic complexes **10** and **11** (Scheme 2) are – like the related species **8** and **9** – red, air-stable solids which were characterized by elemental analysis and spectroscopic techniques. Due to the methylation of the C=S moiety, the signal of the respective carbon atom in the ¹³C-NMR spectrum is shifted from δ = 210.3 (for **7**) to δ = 196.8 (for **10**) and 200.2 (for **11**), which is in agreement with a partial decrease of the C-S bond order.

While attempts to methylate the C=S bond of the cationic species 8 and 9 with [OMe₃]BF₄ failed, the synthesis of the wanted dicationic metallaheterocycles 12 and 13 was achieved by treatment of 10 and 11 with HBF₄ in nitromethane/ether. The protonation appears to be reversible since during chromatography of solutions of 12 and 13 in CH₂Cl₂ or CH₃NO₂ on neutral Al₂O₃ the starting materials 10 and 11 are reformed. Owing to the doubly positive charge of the complexes, the ¹H-NMR signals of the C₅H₅ and PCH₃ protons of 12 and 13 are shifted, compared to 10 and 11, to significantly lower fields. The orange-yellow solids 12 and 13 are only sparingly soluble in CH₃NO₂ or CH₂Cl₂ and in solution slowly loose HBF₄ to regenerate 10 and 11.

Bicyclic Dithiolenecobalt Complexes by Addition of Sulfur

The reaction of compounds **5**, **6** and **7** with sulfur, originally aimed to prepare $[C_5H_5CoS_5(PMe_2Ph)]$ and the four-membered heterocycles $SC(=S)N(R)C(=CH_2)$, unexpectedly leads to the formation of the novel bicyclic dithiolene-cobalt complexes **14–16** (Scheme 3) in 40–50% yield. In the course of the reaction, the phosphane ligand is eliminated and reacts with S_8 to give $SPMe_2Ph$ as a byproduct. Monocyclic relatives of **14–16** of the general composition $[C_5H_5Co\{\kappa^2(S,S)-S_2C_2RR'\}]$ are already known and have been obtained either from mononuclear C_5H_5Co derivatives of from Co_3 clusters Secondary Secondary

The neutral complexes 14-16 form green crystals which are only slightly air-sensitive and easily soluble in chlorinated hydrocarbons such as CH_2Cl_2 or $CHCl_3$. As the X-ray crystal-structure analysis of 14 showed [4], the bicyclic fragment is almost exactly planar, the dihedral angle between the CoS_2C_2 and C_2SCN planes being 2.7 and 1.7°, respectively. The two C-S distances of the cobalt-containing ring are somewhat shorter (by ca. 0.05 Å) than the two C-S bond lengths in the second ring, which points to partial electron delocalization of the CoS_2C_2 unit.

The interesting question of how the novel dithiolenecobalt complexes 14–16 are formed from the monocyclic precursors 5–7 and sulfur cannot be answered conclusively. A labeling experiment, in which isotopically pure ¹²CH₃I was used for the preparation of 5, revealed that one of the central carbon atoms of the bicyclic system, which is connected to two S and one C atom, stems from the exocyclic =CH₂ unit^[4]. However, despite this information it is not clear what the initial step of the reaction is and which intermediates are involved in the rearrangement from the original metal-

Scheme 3

laheterocycle to the bicyclic dithiolenes. It should be mentioned that the starting materials 5–7 are quite inert towards selenium and do not react even upon stirring at 70°C in benzene for 3 days.

In order to find out whether the bicyclic dithiolenes like the monocyclic precursors 5-7 are also attacked by electrophiles, the reactivity of compound 14 towards CF₃SO₃CH₃ and CH₂N₂ was investigated. The results are outlined in Scheme 4. Methyl triflate reacts with the exocyclic C=S bond of 14 and affords the ionic complex 17 in ca. 65% yield. Treatment of 14 with diazomethane in CH₂Cl₂/ether at -30° C leads to the formation of a CH₂ adduct 18, which is probably related in structure to a corresponding species obtained by Sugimori et al. from the monocyclic dithiolenecobalt complex $[C_5H_5C_0\{\kappa^2(S,S)-S_2C_2(CN)_2\}]$ CH₂N₂^[7]. The ¹H-NMR spectrum of **18** (in CDCl₃) displays besides the resonances for the C₅H₅ and the NCH₃ protons two doublets at $\delta = 3.88$ and 1.94 which are assigned to the two stereochemically different protons of the CH₂ group. The signal for the CH₂ carbon atom appears in the ¹³C-NMR spectrum (in CDCl₃) at $\delta = 27.0$, which is in agreement with Sugimori's results[7]. From the spectroscopic data of 18, however, and also from the fragmentation pattern in the mass spectrum we can not decide, whether the addition of the CH₂ moiety takes place at the Co-S bond in cis or in trans disposition to the NCH3 substituent at the central C=C bond of 14.

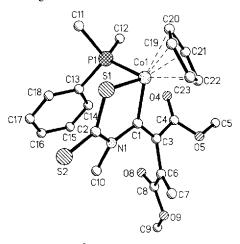
Scheme 4

$$\begin{array}{c} CH_{3} & CF_{3}SO_{3}Me \\ CO_{S} & C-SMe \\ CO_{S} & C-S \\ C$$

Alkyne Insertion into the Exocyclic C=CH₂ Bond

The reaction of the monocyclic compounds 5–7 with activated alkynes $C_2(CO_2R')_2$ (R' = Me, Et) follows an unex-

pected route. Since it is known that various five-membered metallacycles react with alkynes by ring expansion and, after elimination of the metal-ligand fragment to form sixmembered rings^[8], we anticipated that on treatment of 5-7 with C₂(CO₂R')₂ a similar process could occur. However, instead of an insertion of the alkyne into the Co-C bond of the starting material a formal insertion into the exocyclic C=C bond takes place (Scheme 5). After chromatographic workup and recrystallization from CH₂Cl₂/cther, the complexes 19-22 are isolated in 60-70% yield. They form brown crystals which are quite stable both in the solid state and in solution. The ¹³C-NMR spectra of 19-22 (in CDCl₃) display two signals for the carbon atoms which are connected to a CO₂R' group at $\delta \approx 167$ and 140 and a resonance for the =CH₂ carbon atom at $\delta \approx 127$. The assignment of the latter has been confirmed by DEPT measurements. The signals of the =CH₂ protons appear in the ¹H-NMR spectra of the insertion products in the region between $\delta = 5.3$ and 6.3 and are thus shifted by ca. 1.0–1.5 ppm downfield compared to those of 5-7.


With regard to the mechanism of formation of 19–22 we assume that in the initial step the electrophilic alkyne attacks the exocyclic $C=CH_2$ bond of 5–7 to generate, possibly via a zwitterionic intermediate, a heterocycle with a fused four-membered ring. The opening of this ring at the $C_{sp3}-C_{sp3}$ bond could lead to the product carrying a $=C(CO_2R')-C(CO_2R')=CH_2$ substituent at the α -carbon atom of the metallacycle. Precedence for this mechanistic scheme stems from the work by Fischer and Dötz who studied the insertion of alkynes such as $MeC=CNEt_2$ into the M=C bond of carbenechromium and -tungsten derivatives^[9].

Scheme 5. $L = PMe_2Ph$

The result of the X-ray crystal-structural analysis of 19 is shown in Figure 1. The five-membered heterocycle is nearly coplanar with the largest deviation from [Co,C1,N1,C2,S1] plane observed for S2 (0.082 Å). Both the bond lengths and angles of the CoCNCS ring of 19 and of the precursor complex $\mathbf{5}^{[4]}$ are quite similar which indicates that the two different substituents = CH₂ (in 5) and $=C(CO_2Me)-C(CO_2Me)=CH_2$ (in 19) are only of minor importance for the bond situation of the heterocycle. The distances C1-C3, C3-C6 and C6-C7 are alternating from 137.3(4) to 149.4(4) and 132.8(4) Å which is in agreement with the presence of a butadien-like fragment. It should be

noted that the two CO₂Me groups prefer an *anti*-type arrangement at the C-C bond which probably minimizes the steric repulsion between these two units.

Figure 1. Molecular structure of 19[a]

 $^{\rm [a]}$ Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$: Co-P 2.185(1), Co-S1 2.184(1), Co-C1 1.944(3), Co-C19 2.093(3), Co-C20 2.093(3), Co-C21 2.091(3), Co-C22 2.103(3), Co-C23 2.102(3), C1-N1 1.424(3), C2-N1 1.367(4), C2-S1 1.697(3), C2-S2 1.673(3), N1-C10 1.474(4), C1-C3 1.373(4), C3-C4 1.480(4), C3-C6 1.494(4), C6-C7 1.328(4), C6-C8 1.490(4), C4-O4 1.198(4), C4-O5 1.355(4), C8-O8 1.202(4), C8-O9 1.329(4); P-Co-S1 91.2(1), P-Co-C1 92.2(1), S1-Co-C1 86.7(1), Co-S1-C2 101.1(1), S1-C2-S2 120.2(2), S1-C2-N1 116.1(2), S2-C2-N1 123.7(2), C1-N1-C2 119.8(2), C1-N1-C10 122.2(2), C2-N1-C10 117.1(2), N1-C1-C3 117.4(2), Co-C1-N1 115.8(2), Co-C1-C3 126.4(2), C1-C3-C4 121.3(3), C1-C3-C6 124.6(2), C4-C3-C6 114.0(2), C3-C6-C7 122.4(3), C3-C6-C8 121.7(3), C3-C4-O4 127.5(3), C3-C4-O5 110.0(2), O4-C4-C5 122.4(3), C6-C8-O9 123.1(3).

The behavior of the insertion product 19 towards HBF_4 and $[OMe_3]BF_4$ is quite similar to that of complex 5. Whilst the Broensted acid reacts with the $C=CH_2$ bond to form a cationic metallaheterocycle containing a vinylic unit $-C(CO_2Me)=C(CO_2Me)CH_3$ at the α -carbon atom of the ring, Meerwein's reagent $[OMe_3]BF_4$ attacks the exocyclic C=S bond and affords a derivative with a SCH_3 substituent. Both 23 and 24 (Scheme 6) are red or red-brown, airstable solids, which in nitromethane reveal a conductivity corresponding to a 1:1 electrolyte. Particularly diagnostic in the 1H -NMR spectrum of 24 (CD_3NO_2) are the two signals for the protons of the terminal $=CH_2$ group, which appear as doublets at $\delta = 6.22$ and 5.30.

This work was supported by the Ministry of Education of the People's Republic of China and the Stiftung Volkswagenwerk. We thank Mrs. R. Schedl and Mr. C. P. Kneis for elemental analyses and DTA measurements, Dr. W. Buchner for recording NMR spectra, and Dr. G. Lange and Mr. F. Dadrich for mass-spectroscopic measurements.

Experimental Section

All operations were carried out under argon with the Schlenk technique. $[C_5H_5Co(PMe_2Ph)_2]$ was prepared as described in the literature^[10]. A preparative procedure for the starting material **2** and compound **14** was already given^[4,11]. The alkynes $C_2(CO_2R')_2$ and the isocyanides were commercial products from Aldrich. – IR:

Scheme 6. $L = PMe_2Ph$

Perkin-Elmer 1420. – NMR: Jeol FX 90 Q and Bruker AC 200. – MS: Varian MAT CH7.

- 1. Preparation of $[C_5H_5Co\{C(CH_3)=NR\}(PMe_2Ph)]I(3, 4)$: A solution of 175 mg (0.43 mmol) of $[C_5H_5Co(PMe_2Ph)_2]$ in 6 ml of benzene was treated with an equimolar amount of CNR (R = Ph, CH₂Ph) and stirred for 10 min at room temp. The solvent was removed in vacuo, and the brownish oily residuc was extracted with 5 ml of pentane. The extract (containing the isocyanide complex $[C_5H_5Co(CNR)(PMe_2Ph)]$) was treated at $-30^{\circ}C$ with 80 μ l (1.30) mmol) of CH₃I and stirred for 5 min. A yellow solid precipitated, which was separated from the mother liquor, washed twice with 3ml portions of pentane (-30°C) and dried; yield 75--80%. Due to the lability and air sensitivity of the product it was only characterized by IR and ¹H-NMR spectroscopy. 3: IR (KBr): $\tilde{v} = 1625$ cm⁻¹ [v(C=N)]. - ¹H NMR (200 MHz, CDCl₃): $\delta = 7.1-7.6$ (m, 10H, C_6H_5), 5.40 [d, J(PH) = 0.4 Hz, 5H, C_5H_5], 3.28 [d, J(PH)= 2.5 Hz, 3H, CCH₃], 2.20 [d, J(PH) = 11.0 Hz, 3H, PCH₃], 2.05 [d, J(PH) = 11.4 Hz, 3H, PCH_3]. - 4: IR (KBr): $\tilde{v} = 1635 \text{ cm}^{-1}$ [v(C=N)]. - ¹H NMR (200 MHz, CDCl₃): $\delta = 7.2-7.8$ (m, 10H, C_6H_5), 5.28 [d, J(PH) = 0.5 Hz, 5H, C_5H_5], 4.90 (br. s, 2H, NCH₂), 3.40 [d, J(PH) = 2.2 Hz, 3H, CCH₃], 2.15 [d, J(PH) = 10.8 Hz, 3H, PCH_3], 2.07 [d, J(PH) = 10.5 Hz, 3H, PCH_3].
- 2. Preparation of $[C_5H_5Co \{\kappa^2(C,S)-C(=CH_2)N(CH_3)-C(=S)S\}(PMe_2Ph)]$ (5): The synthesis of compound 5 from 2 and CS₂ had already been reported^[4]. An alternative preparative procedure is as follows: A solution of 250 mg (0.56 mmol) of 2 in 10 ml of CH₂Cl₂ was treated with 267 mg (1.68 mmol) of K[S₂CNMe₂] at room temp. After the reaction mixture had been stirred for 4 h, the solvent was removed, the residue was dissolved in 2 ml of CH₂Cl₂, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 6 cm). With CH₂Cl₂/pentane (10:1) a brown fraction was eluted which was brought to dryness in vacuo. Recrystallization from CH₂Cl₂/ether gave brown crystals; yield 170 mg (77%). The product was characterized by comparison of the IR and NMR data with those of an authentic sample^[4].
- 3. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=CH_2)N(C_6H_5)C-(=S)S\}(PMe_2Ph)]$ (6). (a) A solution of 250 mg (0.49 mmol) of 3 in 10 ml of CH_2Cl_2 was treated dropwise with 0.1 ml (1.60 mmol) of CS_2 at room temp. After the solution had been stirred for 1 h, 30 mg (0.55 mmol) of NaOCH₃ was added, and the reaction mixture was stirred again for 3 h. The solvent was removed, and the residue was worked up as described for 5. Upon recrys-

tallization from CH₂Cl₂/ether brown crystals were obtained; yield 155 mg (68%). – (b) Compound **6** was also prepared analogously as described for **5**, by using 250 mg (0.49 mmol) of **3** and a three-fold excess of K[S₂CNMe₂] as starting materials; yield 173 mg (76%); m.p. 193°C (dec.). – IR (KBr): $\tilde{v} = 1160 \text{ cm}^{-1}$ [v(C=S)]. – ¹H NMR (90 MHz, CDCl₃): $\delta = 7.2-7.8$ (m, 10H, C_6H_5), 4.77 [d, J(PH) = 0.4 Hz, 5H, C_5H_5], 4.60 [dd, J(PH) = 2.4, J(HH) = 1.2 Hz, 1H, 1H of =CH₂], 4.43 [dd, J(PH) = 3.6, J(HH) = 1.2 Hz, 1H, 1H of =CH₂], 1.72 [d, J(PH) = 10.6 Hz, 3H, PCH₃], 1.61 [d, J(PH) = 10.4 Hz, 3H, PCH₃]. – $C_{22}H_{23}$ CoNPS₂ (455.2): calcd. C 58.00, H 5.09, N 3.08; found C 58.12, H 5.11, N 3.30.

- 4. Preparation of $C_5H_5Co\{\kappa^2(C,S)-C(=CH_2)N(CH_2Ph)C-$ (=S)S (PMe_2Ph) / (7): This compound was prepared analogously as described for 5 and 6 by using either (a) 260 mg (0.50 mmol) of **4**, 0.1 ml (1.60 mmol) of CS₂ and 30 mg (0.55 mmol) of NaOCH₃. or (b) 260 mg (0.50 mmol) of 4 and 240 mg (1.50 mmol) of K[S₂CNMc₂] as starting materials. Recrystallization from CH₂Cl₂/ ether gave brown crystals; yield 152 mg (63%) for (a) and 189 mg (80%) for (b); m.p. 202°C (dec.). – IR (KBr): $\tilde{v} = 1165 \text{ cm}^{-1}$ [v(C=S)]. - ¹H NMR (90 MHz, CDCl₃): $\delta = 7.3-7.9$ (m,10H, C_6H_5), 5.41 (br. s, 2H, NCH₂), 5.32 [dd, J(PH) = 2.3, J(HH) =2.0 Hz, 1H, 1H of =CH₂], 4.93 [d, J(PH) = 0.3 Hz, 5H, C_5H_5], $4.85 \text{ [dd, } J(PH) = 2.5, J(HH) = 2.0 \text{ Hz}, 1H, 1H \text{ of } = CH_2], 1.80$ $[d, J(PH) = 10.6 \text{ Hz}, 3H, PCH_3], 1.61 [d, J(PH) = 10.8 \text{ Hz}, 3H,$ PCH₃]. $- {}^{13}$ C NMR (50.3 MHz, CDCl₃): $\delta = 210.3$ (s, C=S), 157.5 [br. d, J(PC) = 38.7 Hz, CoC], 137.4 [d, J(PC) = 42.3 Hz, ipso-C of PC₆H₅], 137.0, 130.4 (2 s, C₆H₅), 129.1 [d, J(PC) = 7.7 Hz, meta-C of PC₆H₅], 128.6 [d, J(PC) = 9.5 Hz, ortho-C of PC₆H₅], 128.2, 126.8, 126.6 (3 s, C_6H_5), 108.9 [d, J(PC) = 4.3 Hz, $=CH_2$], 89.1 [d, $J(PC) = 2.6 \text{ Hz}, C_5H_5$, 56.0 (br. s, NCH₂), 13.9 [d, J(PC) = 37.7Hz, PCH₃], 12.7 [d, J(PC) = 34.9 Hz, PCH₃]. $- C_{23}H_{25}CoNPS_2$ (469.3): calcd. C 58.82, H 5.37, N 2.98; found C 59.27, H 5.46, N 3.03.
- 5. Preparation of $[C_5H_5Co \{\kappa^2(C,S)-C(CH_3)N(CH_3)C-(=S)S\}(PMe_2Ph)]BF_4$ (8): A solution of 395 mg (1.00 mmol) of 5 in 10 ml of CH_2Cl_2 was treated dropwise with a 54% solution of HBF_4 in ether at room temp. After the reaction mixture had been stirred for 3 min, it was filtered, and the filtrate was concentrated in vacuo to ca. 1 ml. Addition of 10 ml of ether led to the precipitation of a red solid, which was filtered, repeatedly washed with ether and pentane and dried; yield 355 mg (74%); m.p. 216°C (dec.). IR (KBr): $\tilde{v} = 1150$ cm⁻¹ [v(C=S)]. IH NMR (90 MHz, CD_2Cl_2): $\delta = 7.5$ (m, 5H, C_6H_5), 5.59 [d, J(PH) = 0.7 Hz, 5H, C_3H_5], 3.44 (br. s, 3H, NCH₃), 3.41 [d, J(PH) = 2.2 Hz, 3H, CCH₃], 2.09 [d, J(PH) = 11.3 Hz, 3H, PCH₃], 2.05 [d, J(PH) = 11.5 Hz, 3H, PCH₃]. $C_{17}H_{22}BCoF_4NPS_2$ (481.1): calcd. C 42.41, H 4.61, N 2.91; found C 42.13, H 4.35, N 2.57.
- Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(CH_3)N(CH_2Ph)-$ C(=S)S (PMe_2Ph) BF_4 (9): This compound was prepared analogously as described for 8 by using 470 mg (1.00 mmol) of 7 and a 54% solution of HBF₄ in ether as starting materials. Red microcrystalline solid; yield 389 mg (70%); m.p. 204°C (dec.) - IR (KBr): $\tilde{v} = 1155 \text{ cm}^{-1} [v(C=S)] - {}^{1}\text{H NMR } (90 \text{ MHz, } CD_{2}Cl_{2})$: $\delta = 7.2 - 7.7$ (m, 10H, C₆H₅), 5.62 [d, J(PH) = 0.7 Hz, 5H, C₅H₅], 4.75 (br. s, 2H, NCH₂), 3.40 [d, J(PH) = 2.2 Hz, 3H, CCH₃], 2.11 $[d, J(PH) = 11.4 \text{ Hz}, 3H, PCH_3] 2.08 [d, J(PH) = 11.1 \text{ Hz}, 3H,$ PCH_3]. - ¹³C NMR (50.3 MHz, CD_3NO_2): $\delta = 219.1$ (s, C=S), 157.0 [br. d, J(PC) = 46.2 Hz, CoC], 144.2, 141.9, 139.7, 139.4, 139.1, 139.0, 137.8, 135.7 (8 s or overlapping d, C₆H₅), 97.7 (s, C_5H_5), 59.1 (br. s, NCH₂), 11.6 [d, J(PC) = 31.4 Hz, PCH₃], 10.9 $[d, J(PC) = 34.9 \text{ Hz}, PCH_3], 9.7 (s, CCH_3). - C_{23}H_{26}BCoF_4NPS_2$ (557.1): calcd. C 49.55, H 4.70, N 2.51; found C 49.26, H 4.44, N 2.33.

- 7. Preparation of $\{C_5H_5Co\{\kappa^2(C,S)-C(=CH_2)N(CH_3)C-\}\}$ $(SCH_3)S$ (PMe_2Ph) $]BF_4$ (10): A solution of 395 mg (1.00 mmol) of 5 in 10 ml of CH₃NO₂ was treated with small portions of 177 mg (1.20 mmol) of [OMe₃]BF₄ and stirred for 30 min at room temp. The solution was filtered, the filtrate was concentrated in vacuo to ca. 1 ml, and 10 ml of ether was added. An orange-yellow solid precipitated which was separated from the mother liquor, repeatedly washed with ether and pentane and dried; yield 400 mg (81%); m.p. 197° C (dec.). $- {}^{1}$ H NMR (90 MHz, CDCl₃): $\delta = 7.5$ (m, 5H, C_6H_5), 5.50 [dd, J(PH) = 2.8, J(HH) = 2.2 Hz, 1H, 1H of $=CH_2$], $5.22 [d, J(PH) = 0.3 Hz, 5H, C_5H_5], 5.20 [dd, J(PH) = 2.7, J(HH)]$ = 2.2 Hz, 1H, 1H of $= \text{CH}_2$], 3.06 (s, 3H, SCH₃), 2.81 (br. s, 3H, NCH_3), 1.97 [d, J(PH) = 11.1 Hz, 3H, PCH_3], 1.81 [d, J(PH) =11.0 Hz, 3H, PCH₃]. - ¹³C NMR (50.3 MHz, CDCl₃): δ = 196.8 (s, SCN), 159.4 [br. d, J(PC) = 40.2 Hz, CoC], 132.7 [d, J(PC) =49.8 Hz, ipso-C of PC₆H₅], 130.7 [d, J(PC) = 2.7 Hz, para-C of PC_6H_5], 129.6 [d, J(PC) = 7.0 Hz, meta-C of PC_6H_5], 128.1 [d, $J(PC) = 9.8 \text{ Hz}, \text{ ortho-C of } PC_6H_5], 113.4 \text{ [d, } J(PC) = 5.0 \text{ Hz},$ =CH₂], 91.6 [d, J(PC) = 2.5 Hz, C_5H_5], 36.6 (br. s, NCH₃), 17.8 (s, SCH₃), 15.0 [d, J(PC) = 33.3 Hz, PCH_3], 13.4 [d, J(PC) = 35.1Hz, PCH₃]. - C₁₈H₂₄BCoF₄NPS₂ (495.0): calcd. C 43.64, H 4.89, N 2.83; found C 43.85, H 5.01, N 2.65.
- 8. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=CH_2)N(CH_2Ph)C-C(S)\}$ $(SCH_3)S$ (PMe_2Ph) BF_4 (11): This compound was prepared analogously as described for 10 by using 470 mg (1.00 mmol) of 7 and 177 mg (1.20 mmol) of [OMe₃]BF₄ as starting materials. Orange-yellow crystals; yield 422 mg (74%); m.p. 206°C (dec.). - ^{1}H NMR (90 MHz, CDCl₃): $\delta = 7.2-7.7$ (m, 10H, C₆H₅), 5.40 [dd, J(PH) = 2.8, J(HH) = 2.1 Hz, 1H, 1H of $=CH_2$], 5.25 [d, J(PH) $= 0.3 \text{ Hz}, 5H, C_5H_5$, 5.17 [dd, J(PH) = 2.2, J(HH) = 2.1 Hz, 1H, 1H of = CH_2], 4.75 (br. s, 2H, NCH₂), 2.83 (s, 3H, SCH₃), 1.97 [d, $J(PH) = 10.9 \text{ Hz}, 3H, PCH_3, 1.85 [d, J(PH) = 10.8 \text{ Hz}, 3H,$ PCH₃]. $- {}^{13}$ C NMR (50.3 MHz, CDCl₃): $\delta = 200.2$ (s, SCN), 160.5 [br. d, J(PC) = 41.8 Hz, CoC], 134.5 [d, J(PC) = 49.2 Hz, ipso-C of PC₆H₅], 131.5 [d, J(PC) = 6.8 Hz, meta-C of PC₆H₅], 129.6 [d, $J(PC) = 9.6 \text{ Hz}, \text{ ortho-C of } PC_6H_5, 135.4, 132.2, 130.3, 129.1,$ 127.5 (5 s, C_6H_5), 115.3 (br. s, = CH_2), 91.8 (s, C_5H_5), 54.3 (br. s, NCH_2), 18.5 (s, SCH_3), 15.8 [d, J(PC) = 33.1 Hz, PCH_3], 14.2 [d, $J(PC) = 35.9 \text{ Hz}, PCH_3$]. $- C_{24}H_{28}BCoF_4NPS_2$ (571.1): calcd. C 50.44, H 4.94, N 2.45; found C 50.61, H 5.18, N 2.59.
- Preparation of $\{C_5H_5Co\{\kappa^2(C,S)-C(CH_3)N(CH_3)C-C(CH_3)\}$ $(SCH_3)S_1(PMe_2Ph)J(BF_4)_2$ (12): A solution of 340 mg (0.70) mmol) of 10 in 10 ml of CH₃NO₂ was treated with a large excess (ca. 1 ml) of a 54% solution of HBF₄ in ether. After the reaction mixture had been stirred for 1 h at room temp., the solvent was removed. The residue was dissolved in 2 ml of methanol, and 10 ml of ether was added to the solution. An orange-yellow solid precipitated, which was separated from the mother liquor and washed three times with 10-ml portions of ether. Recrystallization from CH₂Cl₂/ether gave orange-yellow air-stable crystals; yield 334 mg (82%); m.p. 184°C (dec.). - ¹H NMR (90 MHz, CDCl₃): $\delta = 7.5$ $(m, 5H, C_6H_5), 6.02 [d, J(PH) = 1.0 Hz, 5H, C_5H_5], 3.64 [d, J(PH)]$ $= 2.5 \text{ Hz}, 3H, \text{CCH}_3$, 3.51 (br. s, 3H, NCH₃), 3.14 (s, 3H, SCH₃), 2.39 [d, J(PH) = 11.8 Hz, 3H, PCH_3], 2.26 [d, J(PH) = 11.6 Hz, 3H, PCH₃]. - C₁₈H₂₅B₂CoF₈NPS₂ (582.8): calcd. C 37.07, H 4.32, N 2.40; found C 37.29, H 4.41, N 2.44.
- 10. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(CH_3)N(CH_2Ph)C-(SCH_3)S\}(PMe_2Ph)](BF_4)_2$ (13): This compound was prepared analogously as described for 12 by using 400 mg (0.70 mmol) of 11 and HBF₄ as starting materials. Orange-yellow air-stable crystals; yield 354 mg (77%); m.p. 164°C (dec.). ¹H NMR (90 MHz, CDCl₃): $\delta = 7.2-7.7$ (m, 10H, C_6H_5), 6.12 [d, J(PH) = 1.1 Hz,

- 5H, C_5H_5], 5.20 (br. s, 2H, NCH₂), 3.68 [d, J(PH) = 3.4 Hz, 3H, CCH₃], 3.14 (s, 3H, SCH₃), 2.40 [d, J(PH) = 11.2 Hz, 3H, PCH₃], 2.35 [d, J(PH) = 11.0 Hz, 3H, PCH₃]. $C_{24}H_{29}B_2CoF_8NPS_2$ (658.8): calcd. C 43.72, H 4.44, N 2.13; found C 43.15, H 4.66, N 2.10.
- 11. Preparation of $\{C_5H_5Co\{\kappa^2(S,S)-S_2C_2(SC(=S)NC_6H_5)\}\}$ (15): A suspension of 228 mg (0.50 mmol) of 6 in 10 ml of benzenc was treated with an excess (ca. 100 mg) of sulfur, and the reaction mixture was stirred for 48 h at 65°C. A change of color from brown to green occurred. After the mixture had been cooled to room temp., the solvent was removed. The residue was dissolved in 2 ml of CH₂Cl₂, and the solution was chromatographed on Al₂O₃ (neutral, activity grade III, height of column 6 cm). With CH2Cl2/pentane (10:1), first a colorless fraction (containing SPMe₂Ph) and then a green fraction was eluted. The latter was concentrated in vacuo to ca. 4 ml, and 20 ml of pentane was added. Upon cooling to -78°C, green crystals precipitated which were separated from the mother liquor, repeatedly washed with pentane and dried; yield 88 mg (45%); m.p. 226°C (dec.). – IR (KBr): $\tilde{v} = 1165 \text{ cm}^{-1}$ [v(C=S)]. $- {}^{1}H$ NMR (90 MHz, CDCl₃): $\delta = 7.34$ (m, 5H, C₆H₅), 5.28 (s, 5H, C_5H_5). $-C_{14}H_{10}CoNS_4$ (379.3): calcd. C 44.30, H 2.67, N 3.39; found C 44.45, H 2.46, N 3.40.
- 12. Preparation of $[C_5H_5Co\{\kappa^2(S,S)-S_2C_2(SC(=S)-NCH_2Ph)\}]$ (16): This compound was prepared analogously as described for 15 by using 235 mg (0.50 mmol) of 7 and ca. 100 mg of sulfur as starting materials. Green microcrystalline solid; yield 75 mg (40%); m.p. 213°C (dec.). 1R (KBr): $\tilde{v}=1160~\text{cm}^{-1}$ [v(C=S)]. ¹H NMR (90 MHz, CDCl₃): $\delta=7.38$ (m, 5H, C₆H₅), 5.30 (s, 5H, C₅H₅), 5.02 (br. s, 2H, NCH₂). MS (70 eV): mlz (%) = 393 (13) [M⁺], 317 (1) [M⁺ CS₂], 276 (4) [M⁺ CNCH₂Ph], 212 (5) [C₅H₅CoS₂C₂⁺]. C₁₅H₁₂CoNS₄ (393.3): calcd. C 45.77, H 3.08, N 3.56; found C 45.56, H 3.17, N 3.55.
- 13. Preparation of $[C_5H_5Co\{\kappa^2(S,S)-S_2C_2(SC(SCH_3)-NCH_3\}](CF_3SO_3)$ (17): A solution of 98 mg (0.31 mmol) of 14 in 5 ml of CH₂Cl₂ was treated at 0°C with 50 mg (0.31 mmol) of CF₃SO₃Me. A rapid change of color from green to blue occurred. After the solution had been stirred for 5 min, the solvent was removed, and the residue was repeatedly washed with ether. Upon recrystallization from CH₂Cl₂/ether, blue air-stable crystals were obtained; yield 94 mg (63%); m.p. 180°C (dec.). $^{-1}$ H NMR (90 MHz, CDCl₃): $\delta = 5.70$ (s, 5H, C₅H₅), 4.25 (br. s, 3H, NCH₃), 3.15 (s, 3H, SCH₃). $^{-1}$ Cl₁H₁₁CoF₃NO₃S₅ (481.3): calcd. C 27.43, H 2.30, N 2.91; found C 27.86, H 2.41, N 2.77.
- 14. Preparation of $[C_5H_5Co\{\kappa^3(C,S,S)-CH_2S_2C_2(SC)=S\}$ NCH_3 }/ (18): A solution of 260 mg (0.82 mmol) of 14 in 8 ml of CH_2Cl_2 was treated at -30°C with 0.40 ml (0.82 mmol) of a 2.0 M solution of CH₂N₂ in ether. A change of color from green to redbrown occurred. After the solution had been warmed to room temp., the solvent was removed in vacuo. The residue was dissolved in 3 ml of CH₂Cl₂, and the solution was chromatographed on Al₂O₃ (neutral, activity grade III, height of column 5 cm). With CH₂Cl₂ a brown fraction was eluted which was brought to dryness in vacuo. Recrystallization from CH₂Cl₂/ether (5:1) at -78°C gave a redbrown microcrystalline solid; yield 65 mg (24%); m.p. 139°C (dec.). – IR (KBr): $\tilde{v} = 1180 \text{ cm}^{-1} [v(C=S)]. - {}^{1}\text{H NMR}$ (90 MHz, CDCl₃): $\delta = 5.12$ (s, 5H, C₅H₅), 3.88 [d, J(HH) = 3.3 Hz, 1H, 1H of CH₂], 3.56 (br. s, 3H, NCH₃), 1.94 [d, J(HH) = 3.3 Hz, 1H, 1H, of CH₂]. $- {}^{13}$ C NMR (50.3 MHz, CDCl₃): $\delta = 190.4$ (s, C=S), 162.5, 144.8 (2 s, C=C), 83.5 (s, C_5H_5), 35.7 (br. s, NCH₃), 27.0 (s, CH₂). – MS (70 eV): m/z (%) = 331 (1) [M⁺], 317 (33) $[M^+ - CH_2]$, 266 (0.3) $[M^+ - C_5H_5]$, 202 (29) $[C_5H_5C_0CH_2S_2^+]$.

- $-C_{10}H_{10}CoNS_4$ (331.3): calcd. C 36.22, H 5.15, N 2.10; found C 35.88, H 5.10, N 2.13.
- Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=C(CO_2Me)C (CO_2Me) = CH_2N(CH_3)C(=S)S(PMe_2Ph)/(19)$: A solution of 275 mg (0.70 mmol) of 5 in 10 ml of benzene was treated with 200 mg (1.40 mmol) of C₂(CO₂Me)₂ and stirred for 18 h under reflux. After the solution had been cooled to room temp., the solvent was removed in vacuo. The residue was dissolved in 3 ml of CH₂Cl₂, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 6 cm). With CH₂Cl₂/pentane (10:1) a brown fraction was eluted which was brought to dryness in vacuo. Recrystallization from CH₂Cl₂/ether gave brown crystals; yield 251 mg (67%); m.p. 160°C (dec.). – IR (KBr): $\tilde{v} = 1090 \text{ cm}^{-1}$ [v(C=S)]. – ¹H NMR (90 MHz, CDCl₃): $\delta = 7.45$ (m, 5H, C₆H₅), 6.31 [d, J(HH) = 1.5 Hz, 1H, 1H of =CH₂], 5.36 (br., 1H, 1H of $=CH_2$), 5.19 (s, 5H, C_5H_5), 3.97, 3.90 (2 s, 3H each, CO_2CH_3), 2.69 (br. s, 3H, NCH₃), 2.28 [d, J(PH) = 10.6 Hz, 3H, PCH₃], 2.16 $[d, J(PH) = 10.2 \text{ Hz}, 3H, PCH_3]. - {}^{13}C \text{ NMR } (50.3 \text{ MHz}, CDCl_3):$ $\delta = 213.0$ (s, C=S), 192.1 [br. d, J(PC) = 38 Hz, CoC], 170.5, 169.8 (2 s, CO_2CH_3), 167.5 (s, 1 C of =CC=), 140.6 [d, J(PC) = 2.4 Hz, 1C of =CC=], 135.1 [d, J(PC) = 55.4 Hz, ipso-C of PC_6H_5], 130.0 [d, J(PC) = 7.7 Hz, meta-C of PC_6H_5], 129.8 [d, J(PC) = 2.8 Hz, para-C of PC₆H₅], 128.1 [d, J(PC) = 9.3 Hz, ortho-C of PC₆H₅], 126.6 (s, =CH₂), 90.0 (s, C₅H₅), 51.9, 51.3 (2 s, OCH_3), 47.7 (br. s, NCH_3), 17.9 [d, J(PC) = 34.5 Hz, PCH_3], 17.2 [d, J(PC) = 31.8 Hz, PCH_3]. - MS (70 eV): m/z (%) = 535 (4) $[M^+], \ \ 370 \ \ (3) \ \ [C_5H_5Co(PMc_2Ph)S_2CS^+], \ \ 306 \ \ (2) \ \ [C_5H_5Co-PMc_2Ph]S_2CS^+]$ $(PMe_2Ph)CS^+$], 189 (5) $[(C_5H_5)_2Co^+]$. - $C_{23}H_{27}CoNO_4PS_2$ (535.3): calcd. C 51.56, H 5.08, N 2.62; found C 51.49, H 5.17, N 2.53.
- 16. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=C(CO_2Me)C-(CO_2Me)=CH_2)N(C_6H_5)C(=S)S\}(PMe_2Ph)J$ (20): This compound was prepared analogously as described for 19 by using 320 mg (0.70 mmol) of 6 and 200 mg (1.41 mmol) of $C_2(CO_2Me)_2$ as starting materials. Brown microcrystalline solid; yield 250 mg (60%); m.p. 156°C (dec.). IR (KBr): $\tilde{v}=1100$ cm⁻¹ [v(C=S)]. ¹H NMR (90 MHz, CDCl₃): $\delta=7.25-7.65$ (m, 10H, C_6H_5), 6.27 [d, J(HH)=1.2 Hz, 1H, 1H of =CH₂], 5.30 (br., 1H, 1H of =CH₂), 5.12 (s, 5H, C_5H_5), 3.98, 3.92 (2 s, 3H each, CO₂CH₃), 2.07 [d, J(PH)=10.3 Hz, 3H, PCH_3], 1.98 [d, J(PH)=10.2 Hz, 3H, PCH_3]. $C_{28}H_{29}CoNO_4PS_2$ (597.3): calcd. C 56.31, H 4.89, N 2.34; found C 56.32, H 4.94, N 2.28.
- Preparation of $\int C_5 H_5 Co \{\kappa^2(C,S) C(=C(CO_2Me)C C(CO_2Me)\} C = C(CO_2Me) C$ $(CO_2Me) = CH_2N(CH_2Ph)C(=S)S(PMe_2Ph)$ (21): This compound was prepared analogously as described for 19 by using 330 mg (0.70 mmol) of 7 and 200 mg (1.41 mmol) of $C_2(CO_2Me)_2$ as starting materials. Brown microcrystalline solid; yield 278 mg (65%); m.p. 184°C (dec.). – IR (KBr): $\tilde{v} = 1095 \text{ cm}^{-1} [v(C=S)]$. - ¹³C NMR (50.3 MHz, CDCl₃): δ = 214.1 (s, C=S), 194.1 [br. d, J(PC) = 36 Hz, CoCl, 170.1, 168.4 (2 s, CO_2CH_3), 167.5, 139.6 (2 s, =CC=), 136.9 [d, J(PC) = 43.6 Hz, ipso-C of PC_6H_5], 130.0 $[d, J(PC) = 7.5 \text{ Hz}, meta\text{-}C \text{ of } PC_6H_5], 128.4 [d, J(PC) = 8.7 \text{ Hz},$ ortho-C of PC₆H₅], 138.4, 129.1, 128.6, 127.9, 125.4 (5 s, C₆H₅), 127.3 (s, =CH₂), 88.8 (s, C_5H_5), 58.5 (br. s, NCH₂), 52.0, 51.2 (2 s, OCH_3), 17.2 [d, J(PC) = 28.3 Hz, PCH_3], 15.5 [d, J(PC) = 32.7Hz, PCH₃]. – MS (70 eV); m/z (%) = 611 (10) [M⁺], 494 (2) [M⁺ $CNCH_2Ph$], 370 (2) $[C_5H_5Co(PMe_2Ph)S_2CS^+]$, 306 (4) $[C_5H_5Co(PMe_2Ph)CS^+]$, 189 (2) $[(C_5H_5)_2Co^+]$. - $C_{29}H_{31}CoN$ -O₄PS₂ (611.4): calcd. C 56.93, H 5.11, N 2.29; found C 57.14, H 4.93, N 2.27.
- 18. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=C(CO_2Et)C-(CO_2Et)=CH_2\}N(CH_3)C(=S)S\}(PMe_2Ph)]$ (22): This com-

pound was prepared analogously as described for 19 by using 275 mg (0.70 mmol) of 5 and 238 mg (1.40 mmol) of $C_2(CO_2Et)_2$ as starting materials. Brown air-stable crystals; yield 228 mg (58%); m.p. 153° C (dec.). – IR (KBr): $\tilde{v} = 1090 \text{ cm}^{-1} [v(C=S)]. - {}^{1}\text{H}$ NMR (90 MHz, CDCl₃): $\delta = 7.5$ (m, 5H, C₆H₅), 6.05 [d, J(HH)] = 1.7 Hz, 1H, 1H of $= \text{CH}_2$, 5.43 (br., 1H, 1H of $= \text{CH}_2$), 4.95 (s, 5H, C_5H_5), 4.16, 4.12 [2 q, J(HH) = 7.1 Hz, 2H cach, OCH_2], 2.42 (br. s, 3H, NCH₃), 1.28, 1.23 [2 t, J(HH) = 7.1 Hz, 3H each, OCH_2CII_3], 2.01 [d, J(PH) = 11.1 Hz, 3H, PCH_3], 1.98 [d, J(PH)= 10.4 Hz, 3H, PCH₃]. $- {}^{13}$ C NMR (50.3 MHz, CDCl₃): $\delta =$ 212.7 (s, C=S), 191.0 [br. d, J(PC) = 36.5 Hz, CoC], 169.3, 168.5 $(2 \text{ s}, CO_2\text{Et}), 167.0, 140.9 (2 \text{ s}, =CC=), 135.0 \text{ [d}, J(PC) = 50.8 \text{ Hz},$ ipso-C of PC₆H₅], 129.9 [d, J(PC) = 7.9 Hz, meta-C of PC₆H₅], 129.6 [d, $J(PC = 2.1 \text{ Hz}, para-C \text{ of } PC_6H_5]$, 128.0 [d, J(PC) = 10.2Hz, ortho-C of PC₆H₅], 126.2 (s, =CH₂), 90.0 (s, C₅H₅), 60.5, 59.7 (2 s, OCH_2) , 47.6 (br. s, NCH₃), 17.9, 17.2 [2 d, J(PC) = 34.5 Hz, PCH_3], 14.2, 14.1 (2 s, OCH_2CH_3). - $C_{25}H_{31}CoNO_4PS_2$ (563.3): calcd. C 53.26, H 5.55, N 2.49; found C 53.43, H 5.45, N 2.49.

 $(CO_2Me)CH_3)N(CH_3)C(=S)S$ $(PMe_2Ph)JBF_4$ (23): A solution of 268 mg (0.50 mmol) of 19 in 10 ml of CH₂Cl₂ was treated with an excess (ca. 0.5 ml) of a 54% solution of HBF₄ in ether. After the reaction mixture had been stirred for 20 min at room temp., the solvent was removed, and the residue was dissolved in 3 ml of CH₂Cl₂. Upon addition of 25 ml of pentane, a red solid precipitated which was filtered off and recrystallized from CH₂Cl₂/ether. Red air-stable crystals; yield 249 mg (80%); m.p. 143°C (dec.). Equiv. conductivity (in CH₃NO₂): $\Lambda = 65 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. – IR (KBr: $\tilde{v} = 1070 \text{ cm}^{-1} [v(C=S)]. - {}^{1}\text{H NMR } (90 \text{ MHz, } CD_{3}\text{NO}_{2}):$ $\delta = 7.6$ (m, 5H, C₆H₅), 5.70 [d, J(PH) = 0.7 Hz, 5H, C₅H₅], 4.10, 3.89 (2 s, 3H each, OCH₃) 3.37 (br. s, 3H, NCH₃), 2.23, 2.01 [2 d, $J(PH) = 11.3 \text{ Hz}, 3H \text{ each}, PCH_3, 1.85 (s, 3H, CCH_3).$ C₂₃H₂₈BCoF₄NO₄PS₂ (623.1): calcd. C 44.30, H 4.53, N 2.25; found C 44.12, H 4.65, N 2.21.

20. Preparation of $[C_5H_5Co\{\kappa^2(C,S)-C(=C(CO_2Me)C (CO_2Me) = CH_2N(CH_3)C(SCH_3)S(PMe_2Ph)BF_4$ (24): solution of 268 mg (0.50 mmol) of 19 in 10 ml of CH₂Cl₂ was treated at 0°C with 104 mg (0.70 mmol) of [OMc₃]BF₄ and stirred for 30 min. After the reaction mixture had been warmed to room temp., the solvent was removed. The residue was dissolved in 3 ml of CH₂Cl₂, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 6 cm). With CH₂Cl₂/pentane (10:1), a brown fraction was eluted, which was concentrated in vacuo to ca. 4 ml. Addition of 20 ml of other led to the formation of red-brown precipitate which was filtered, repeatedly washed with ether and pentane and dried; yield 244 mg (64%); m.p. 163°C (dec.). Equiv. conductivity (in CH₃NO₂): $\Lambda = 72 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$. ¹H NMR (90 MHz, CD₃NO₂): $\delta = 7.5$ (m, 5H, C₆H₅), 6.22 [d, $J(HH) = 1.2 \text{ Hz}, 1H, 1H \text{ of } = CH_2$, 5.34 (s, 5H, C₅H₅), 5.30 [d, $J(HH) = 1.2 \text{ Hz}, 1H, 1H \text{ of } = CH_2$], 3.97, 3.76 (2 s, 3H each, OCH₃), 2.92 (br. s, 3H, NCH₃), 2.67 (s, 3H, SCH₃), 2.33, 2.17 [2 d, J(PH) = 10.7 Hz, 3H each, PCH_3]. $- C_{24}H_{30}BCoF_4$ -NO₄PS₂ (637.1): calcd. C 45.20, H 4.74, N 2.20; found C 45.11, H 5.00, N 2.24.

21. Determination of the X-ray Crystal Structure of 19[12]: Single crystals were grown by slow diffusion of ether into a solution of 19 in CH_2Cl_2 . Crystal data: orthorhombic, space group *Pbca*, a =12.777(1), b = 25.127(5), c = 16.119(2) Å, V = 5175.0(6) Å³, Z = 12.777(1)8, $d_{\text{calcd.}} = 1.374 \text{ g cm}^{-3}$, $\mu(\text{Mo-}K_{\alpha}) = 0.91 \text{ mm}^{-1}$; crystal size 0.4 \times 0.6 \times 0.1 mm; STOE-Stadi4 diffractometer, Mo- K_{α} radiation, graphite monochromator; Θ/Θ -scan, $2\Theta_{max} = 50^{\circ}$; 6186 reflections scanned, 4531 unique reflections, 3646 reflections with $F > 3\sigma(F)$. Intensity data were corrected for Lorentz and polarization effects and a geometrical absorption correction was applied. The structure was solved by direct methods (SHELXTL PLUS). Atomic coordinates and the anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least squares. The positions of all hydrogen atoms were calculated according to ideal geometry (distance C-H = 0.95 Å) and refined by the riding method with fixed isotropic U values. R = 0.042, $R_w = 0.028$ [weighting scheme $w = 1/\sigma^2$ (F)]; reflections-to-parameter ratio 12.57; residual electron density $+0.53/-0.42 \text{ e Å}^{-3}$.

^{*} Dedicated to Professor Joachim Strähle on the occasion of his 60th birthday

^[1] Review: H. Werner, Angew. Chem. 1983, 95, 932-954; Angew.

Chem. Int. Ed. Engl. 1983, 22, 927-949.

[2] [2a] H. Werner, B. Heiser, U. Schubert, K. Ackermann, Chem. Ber. 1985, 118, 1517–1530. – [2b] B. Heiser, A. Kühn, H. Werner, Chem. Ber. 1985, 118, 1531–1544. – [2c] H. Werner, B. Heiser, Chem. Ber. 1985, 118, 2282–2293. – [2d] H. Werner in Organometallics in Organic Synthesis (Eds.: A. de Meijere, H. tom Dieck), Springer, Berlin-Heidelberg, 1987, p. 51-67.

U. Schubert, B. Heiser, L. Hee, H. Werner, Chem. Ber. 1985, 118, 3151 - 3158

^[4] H. Werner, Liu Xiaolan, O. Nürnberg, Organometallics 1992, *1*, 432–436.

^{[5] [5}a] R. B. King, J. Am. Chem. Soc. 1963, 85, 1587–1590. – [5b] J. Locke, J. A. McCleverty, Inorg. Chem. 1966, 5, 1157-1161. [5c] R. F. Heck, *Inorg. Chem.* **1968**, *7*, 1513–1516. – [5d] M. Kajitani, R. Ochiai, R. Kikuchi, M. Okubo, T. Akiyama, A. Sugimori, Polyhedron 1990, 9, 1123-1125.

K. P. C. Vollhardt, E. C. Walborsky, J. Am. Chem. Soc. 1983, 105, 5507 – 5509.

^{[7] [7}a] M. Sakurada, M. Kajitani, H. Hatano, Y. Matsudaira, T. Suetsugu, S. Ono, T. Akiyama, A. Sugimori, *Organometallics* **1992**, *11*, 2337–2339. – [7b] M. Sakurada, M. Kajitani, K. Dohki, T. Akiyama, A. Sugimori, J. Organomet. Chem. 1992, *123*, 141–161

^{[8] [8}a] H. Yamazaki, N. Hagihara, J. Organomet. Chem. 1970, 21, 431–443. – [8b] Y. Wakatsuki, T. Kuramitsu, H. Yamazaki, Tethahedron Lett. 1974, 4549–4552. – [8c] L. P. McDonnell Bushnell, E. R. Evitt, R. G. Bergman, J. Organomet. Chem. 1978, 157, 445–456. – [8d] K. P. C. Vollhardt, Acc. Chem. Res. 1977, 10, 1–8. – [8e] H. Bönnemann, Angew. Chem. 1985, 97, 264–279; Angew. Chem. Int. Ed. Engl. 1985, 24, 248–263.

H. Fischer, K. H. Dötz, Chem. Ber. 1980, 113, 193-202.
 H. Werner, W. Hofmann, Chem. Ber. 1977, 110, 3481-3493.

^[11] H. Werner, Liu Xiaolan, K. Peters, H. G. von Schnering, Chem. Ber. 1997, 130, in press.

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100239. Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: int. code +(1223)336-033; e-mail: deposit@chemcrys.cam.ac.uk).